Machine Learning Algorithms

Enroll in this Machine Learning Algorithms course to understand the machine learning methods, algorithms, and techniques employed to analyze and present data for decision-making. Gain a finer hold through demonstrated projects.

4.49
average rating

Ratings

Beginner

Level

2.25 Hrs

Learning hours

27.3K+
local_fire_department

Learners

Earn a certificate of completion

blue-tick

Get free course content

blue-tick

Learn at your own pace

blue-tick

Master in-demand skills & tools

blue-tick

Test your skills with quizzes

Machine Learning Algorithms

2.25 Learning Hours . Beginner

Skills you’ll Learn

About this course

This online Machine Learning Algorithms course has been designed keeping in mind that a novice learner should be able to grasp the concepts and understand algorithms with examples. This course covers the introduction to Machine Learning and the basics of algorithms, along with a theoretical and practical understanding of supervised, unsupervised, and reinforcement learning. You will also gain skills to employ K-nearest Neighbor, Naive Bayes and Random Forest algorithms, and Linear Regression and Support Vector Machines (SVM) techniques to accomplish Machine Learning tasks. A tonne of practical Python demonstrations is offered to comprehend the concepts better. 

 

Extend your learning with Machine Learning PG courses and earn industry-relevant skills to elevate your contribution to your organization.

Why upskill with us?

check circle outline
1000+ free courses
In-demand skills & tools
access time
Free life time Access

Course Outline

Introduction to Machine Learning

This section defines Machine Learning and explains it with an example. 

Types Of Machine Learning

This section discusses Supervised and Unsupervised Machine Learning methods to accomplish various tasks. 

How does a Machine Learning Model Learn?

This section explains how a machine understands to work on a dataset to deliver desired results. It explains the role of pre-fed data set and the process involved in building a Machine Learning model. 
 

Linear Regression Algorithm

This section explains the Linear Regression algorithm with demonstrated example. 

Naïve Bayes Algorithm

This section explains the Naive Bayes algorithm with demonstrated examples. 

KNN Algorithm in Machine Learning

This section explains the KNN algorithm with demonstrated examples. 

Support Vector Machines in Machine Learning

This section explains Support Vector Machine with demonstration example and discusses its applications. 

Random Forest Algorithm in Machine Learning

This section explains the Random Forest algorithm with demonstrated example.

Trusted by 10 Million+ Learners globally

What our learners say about the course

Find out how our platform helped our learners to upskill in their career.

4.49
Course Rating
69%
22%
6%
1%
2%

Ratings & Reviews of this Course

Reviewer Profile

5.0

Optimum Experience with GL | ML Algorithms
This Machine Learning Algorithms course provides a solid introduction to KNN models, linear regressions, and more, making it great for beginners exploring ML.
Reviewer Profile

4.0

Machine Learning Algorithms Course
I thoroughly enjoyed the Machine Learning Algorithms course. The curriculum was well-structured, providing a comprehensive overview of key concepts and techniques. The instructor's expertise was evident in their clear explanations and real-world examples, which helped bridge the gap between theory and practical application. Overall, this course significantly improved my understanding of machine learning algorithms and their applications, leaving me well-equipped to tackle real-world data science challenges.
Reviewer Profile

5.0

Comprehensive and Engaging Learning Experience
The course structure was excellent, with a clear balance between theory and practical applications. The hands-on projects allowed me to apply what I learned immediately, and the community discussions were helpful in clarifying doubts. The instructor's deep knowledge of the subject made complex topics much easier to grasp.
Reviewer Profile

5.0

Machine Learning Algorithms with Great Learning
I liked the whole process of learning, especially the quizzes.
Reviewer Profile

5.0

I Had a Very Nice Experience with This Course
The course was well-designed, and the instructor delivered the concepts very well.
Reviewer Profile

5.0

Really Enjoyed the Lesson, It Was Helpful for My Exams
I really enjoyed the lesson. It was easy to follow and well-structured, making the concepts clear and understandable. The explanations were concise, and the examples helped reinforce the material. Overall, it was an engaging and informative session that kept me interested throughout.
Reviewer Profile

5.0

Comprehensive and Engaging: A Valuable Learning Experience with Practical Insights and Skill Development for Future Success
The Machine Learning Algorithms course provided a clear understanding of key concepts and practical applications. The instructor explained complex topics in an easy-to-follow manner, and the hands-on projects reinforced learning. I feel more confident in applying ML techniques now. Overall, a valuable and enriching experience!
Reviewer Profile

5.0

The Training Provided a Solid Foundation in ML Concepts with Practical Applications and Engaging Discussions Enhancing My Understanding
I liked the course's engaging teaching style and the balance between theory and practice. The instructor's explanations were clear and concise, making complex topics easier to grasp. I also appreciated the hands-on projects, which allowed me to apply what I learned in real-world scenarios. Additionally, the collaborative discussions with peers enriched my understanding and provided diverse perspectives. The resources provided, such as datasets and coding examples, were valuable for deepening my knowledge in machine learning.
Reviewer Profile

5.0

I Have Completed the Machine Learning Course, and It Was an Incredibly Enriching Experience
I recently completed a machine learning course, and it was an incredibly enriching experience. The course covered a wide range of topics, including Linear Regression, Logistic Regression, K-Nearest Neighbors (kNN), and K-means Clustering, providing a solid foundation in both supervised and unsupervised learning methods. The lectures were well-structured, with clear explanations and real-world examples that helped bridge the gap between theory and practical application.

Earn a certificate of completion

blue-tick

Get free course content

blue-tick

Learn at your own pace

blue-tick

Master in-demand skills & tools

blue-tick

Test your skills with quizzes

Machine Learning Algorithms

2.25 Learning Hours . Beginner

Frequently Asked Questions

What are the prerequisites required to learn Machine Learning Algorithms?

Basic computer literacy, Math would be an added advantage; some basic understanding of how to code in Python can ​speed up learning Machine Learning Algorithms. 

 

How long does it take to complete learning basic algorithms for Machine Learning?

It takes about 1 and a half hours to complete the course. 

 

What are Machine Learning Algorithms?

With Machine Learning algorithms, software programs can predict outcomes more accurately without having to be explicitly instructed. They use these algorithms to forecast new output values by feeding historical data.

 

Why is Machine Learning important?

Machine Learning is significant because it uses various algorithms to help companies build new goods by providing insights into consumer behavior trends and operational business patterns. Machine learning is a key component of the operations of many of the world's most successful businesses today, like Facebook, Google, and Uber. For numerous businesses, machine learning has significantly increased their competitive edge.

 

Why is Machine Learning popular?

Machine learning is one of the most important technologies today. Since it is used in practically every field, it is widely used by professionals, academics, and students. You probably already know how effective and potent a well-trained machine-learning model is in solving issues. This is possible since the algorithms are fed with data, and the result is a model. Since this is a fundamental idea, everyone in the class must fully grasp the algorithms.

 

How to choose a suitable Machine Learning model?

If not done carefully, selecting the best machine learning model to address a problem can take a lot of time. The basic guide to choosing a suitable model:
Step 1: Align the issue with potential data sources that should be considered for the solution. Data scientists and skilled professionals with in-depth knowledge of the issue are needed for assistance with this phase.
Step 2: Gather information, format it, and, if necessary, label it. With assistance from data wranglers, data scientists often take the lead in this step.
Step 3: Select the algorithm(s) to employ, then test them to see how they perform. Data scientists typically handle this stage.
Step 4: Once outputs are accurate enough, they can be further fine-tuned. Data scientists often complete this step with input from subject matter experts who thoroughly understand the issue.
Will I get a certificate after completing this course?
Answer: Yes, you will get a course completion certificate after qualifying in the quiz. 
 

What knowledge and skills will I gain upon algorithms for Machine Learning course?

By the end of this course, you will understand the basics of Machine Learning and fundamental algorithms that can be used in Machine Learning, like Linear Regression, Naive Bayes, KNN, Random Forest algorithms, and Support Vector Machines.

 

Can I take the Machine Learning course multiple times?

Yes. You will have free lifetime access to this course, so you can access the course at your leisure. 

How much does this Machine Learning Algorithms course cost?

It is an entirely free course from Great Learning Academy. Anyone interested in learning the basics of Machine Learning Algorithms can get started with this course.

Can I sign up for multiple courses from Great Learning Academy at the same time?

Yes, you can enroll in as many courses as you want from Great Learning Academy. There is no limit to the number of courses you can enroll in at once, but since the courses offered by Great Learning Academy are free, we suggest you learn one by one to get the best out of the subject.

Why choose Great Learning Academy for this free Machine Learning Algorithms course?

Great Learning Academy provides this Machine Learning Algorithms course for free online. The course is self-paced and helps you understand various topics that fall under the subject with solved problems and demonstrated examples. The course is carefully designed, keeping in mind to cater to both beginners and professionals, and is delivered by subject experts. Great Learning is a global ed-tech platform dedicated to developing competent professionals. Great Learning Academy is an initiative by Great Learning that offers in-demand free online courses to help people advance in their jobs. More than 5 million learners from 140 countries have benefited from Great Learning Academy's free online courses with certificates. It is a one-stop place for all of a learner's goals.

What are the steps to enroll in this Machine Learning Algorithms course?

Enrolling in any of the Great Learning Academy’s courses is just one step process. Sign-up for the course, you are interested in learning through your E-mail ID and start learning them for free online.

Will I have lifetime access to this free Machine Learning Algorithms course?

Yes, once you enroll in the course, you will have lifetime access, where you can log in and learn whenever you want to. 

Is there any limit on how many times I can take this free course?

Once you enroll in the Machine Learning Algorithms course, you have lifetime access to it. So, you can log in anytime and learn it for free online.

Recommended Free Machine Learning courses

Free
Feature Engineering for Machine Learning
course card image

Free

Beginner

Free
Google Colab Python
course card image

Free

Beginner

Free
NumPy Tutorial
course card image

Free

Beginner

Free
Python Matplotlib
course card image

Free

Beginner

Similar courses you might like

Free
Basics of EDA with Python
course card image

Free

Beginner

Free
Data Visualization using Python
course card image

Free

INTERMEDIATE

Free
Statistics for Machine Learning
course card image

Free

Beginner

Free
Uses of Pandas
course card image

Free

Beginner

Related Machine Learning Courses

50% Average salary hike
Explore degree and certificate programs from world-class universities that take your career forward.
Personalized Recommendations
checkmark icon
Placement assistance
checkmark icon
Personalized mentorship
checkmark icon
Detailed curriculum
checkmark icon
Learn from world-class faculties

Machine Learning Algorithms

Types of Machine Learning

Supervised Machine Learning :

Supervised machine learning is when the algorithm learns by analyzing data that has been labeled. Labeled data is divided into two groups: training data (used to train the model) and testing data (used to see how well the model performed). Supervised machine learning aims to use the labeled data to teach the AI to make predictions about future events or behaviors on unlabeled data.

 

Unsupervised Machine Learning:

Unsupervised machine learning is when an algorithm learns from unlabeled or unknown data points without any known output, called unlabeled sets. Without known target outputs, unsupervised learning can group different data points according to some criteria like clustering. Unsupervised methods allow machines to learn from natural data such as images or human speech.

 

Reinforcement Learning:

Reinforcement learning is an area of machine learning that deals with the problem of how an artificial agent can figure out what action to take in a particular environment to maximize some kind of reward. It differs from other methods, such as supervised and unsupervised learning, by providing feedback after each step in the form of the reward. The agent then uses this feedback to create a policy that it can use to select its future actions. Here are some ways reinforcement learning helps us learn more about our world. It is often used in artificial intelligence applications to solve problems. Reinforcement learning allows an agent to learn by trial and error in a dynamic environment with many possible states. The agent learns by receiving "rewards" or "penalties" after every single action it takes. The goal of reinforcement learning is to find out how to maximize the total reward received over time, which usually means finding the best sequence of actions to take to achieve the desired objective. 

 

Linear Regression :

Linear regression is a statistical technique used to predict and analyze the relationship between two variables. It is also called linear regression analysis and is considered a method of multiple linear regression. A simple example: we would like to know how long it takes for a car to travel at different speeds. We want to know how this affects the length of the trip. Linear regression will tell us what speeds are best for getting somewhere in the shortest amount of time, how much more gas we will use, or which route will take less time. A major benefit of linear regression is that it allows us to use data from both quantitative and qualitative sources to make predictions about future events. With this information, we can make better decisions for ourselves and our organizations. A linear regression equation takes the form of Y = c+ βX, where Y stands for the predicted value of the dependent variable (for example, profit), X stands for the independent variable (for example, an individual's income), and β represents the slope coefficient. The slope coefficient indicates how much Y changes for every one-unit increase in X; it is also called the beta coefficient or simply beta. Linear regression is useful because it simplifies complex systems into a straight line with an equation that can be easily interpreted and calculated.

 

Logistic Regression :

Logistic regression is an extension of linear regression. Linear regression is when the dependent variable is continuous, and logistic regression deals with categorical data. Logistic regression is a statistical technique that allows for the analysis of data with binary outcome variables. This model is used when the dependent variable has two values, one success and one failure. The dichotomous outcome variable can be broken down into multiple explanatory variables. These variables are then tested to see if they are significant or not. Logistic regression should not be confused with other types of regressions because it only works with binary outcome variables, and this distinction cannot be ignored when interpreting results. Logistic regression models predict the probability that an event will occur by using one or more predictor variables. These variables can be continuous (like age) or categorical (like gender). Typically, the goal of these models is to estimate the probability of a certain outcome occurring (i.e., whether a customer will buy this product). This information can then be used to make informed decisions about marketing campaigns or product design.

 

Naive Bayes Algorithm:

The Naive Bayes algorithm is a probabilistic machine learning model, a classification algorithm that belongs to the family of conditional probability algorithms. Naive Bayes assumes that all features are independent of one another and uses Bayes theorem or a variant thereof for calculations. Unlike many other algorithms in the family of probabilistic classification algorithms, it can be computationally effective with a small amount of training data.

 

Naive Bayes is often used for text classification, such as spam filtering or sentiment analysis, because texts have few features and tend to be drawn from a limited vocabulary. In these domains, naive Bayesian models tend to perform well both empirically and theoretically. It uses conditional probabilities, which are the probabilities of each possible outcome given the other outcomes, to predict the value for an unobserved variable. The algorithm can be used in many different ways, but classification is one of its most common applications. Naive Bayes classifiers are easy to train and perform well when the categories are mutually exclusive (i.e., no overlap in the data). It is often used in text classification applications where words can have more than one meaning, and there is no reliable way to assign different weights to different meanings.

 

This can be attributed to words having multiple meanings or synonyms. For example, a naïve Bayes classifier may classify "chicken" as a member of both the "bird" and "meta" categories. They are especially popular on email spam filtering, market basket analysis, and photo tagging.

 

K-Nearest Neighbors:

KNN is a supervised learning algorithm, which means that it uses labeled examples to learn. It is a machine learning algorithm that categorizes data based on its distance to other pieces of data. KNN classifies data by finding the most similar labeled example in its neighborhood. It is used in classification, regression analysis, cluster analysis, density estimation, anomaly detection, and many other analytical tasks. This algorithm has been applied in many fields such as marketing, finance, and medicine.

 

Decision Trees :

Decision trees are well-known machine learning algorithms because they are commonly used in planning software systems and data analytics. The algorithm is usually used in conjunction with clustering algorithms. When a set of input data is first fed into a decision tree, it only has one possible outcome. The next input to the algorithm does not have any effect on what the tree will do next. As the set of inputs continues to grow and multiple outcomes become possible, the branches of the tree branch out and connect. A decision tree is useful in determining the optimal way to plan the execution of algorithms. A decision tree does not create .new variables but allows a set of variables to be attached to different branches.

 

 

Random Forests :

One of the most popular machine learning algorithms is random forests. Its simplicity and ability to utilize past data is what makes it such a powerful and popular algorithm. A machine learning technique, random forests can significantly reduce prediction errors in a wide variety of fields. It is most often used for either regression or classification. For regression, the goal is to predict a real-valued outcome based on many input features. This is done by creating individual decision trees with bootstrapped data samples that are sampled at random. The final prediction is achieved by averaging the predictions from all trees. Each tree creates its own rules to classify its input data points into one of two classes (e.g., yes or no). This classifier can make accurate predictions if it has encountered enough data points that share commonalities with the new data point being predicted.

 

Random forests have a series of steps that are:

Step 1: Train a model using a set of training data.

Step 2: Reduce the model over several runs.

Step 3: Use the information gained from Step 2 to predict a new set of data using the algorithm again.

 

The random forests method is highly recommended when learning through patterns and generating predictions from a set of training data. It is especially useful for problems with large numbers of input variables and no clear boundaries between classes. Random forests are not dependent on the number of samples in the training data. They are robust to missing values and can handle nonlinear relationships between variables. They also show better generalization performance than other machine-learning models, such as support vector machines and linear discriminant analysis.

 

Random forests, or random decision trees, are a type of ensemble learning. Ensemble learning is when we use more than one algorithm to solve a problem and combine the results. Random forests are an example of bagging where we take many random samples from our data and then average all the samples together to create a new model. This means that every time we go through the process, we get a different answer. By averaging out our errors, we can get a more accurate model than just one tree would give us.

 

Support Vector Machines (SVM) :

For more than half a century, the support vector machine algorithm has been one of the most widely used machine learning algorithms. It is a mathematical model that has many applications in many different areas. Support Vector Machines are a type of supervised machine learning model that can be used for classification and regression tasks. They can be generalized as a linear classifier, where the vector space is a high dimensional space with a hyperplane that separates instances of two classes. Support Vector Machine is an algorithm that finds the optimum separating hyperplane, which maximizes the margin between two classes. It is very fast and accurate, and it offers some advantages over other methods such as Logistic Regression. The algorithm will find the linear border between two different classes to be used to create a classifier. An SVM can also be used for regression, where the goal is to predict values instead of classifying instances into categories. A Support Vector Machine can be understood as a binary decision boundary that attempts to maximize the distance between the closest points in each of the classes being separated by the decision boundary. SVMs are classified as nonparametric classifiers because they don't make assumptions about the underlying distribution of the data. SVM classification algorithms are trained with labeled examples that have been annotated with their target label or category. After training, an SVM can classify new inputs based on these annotations. When applied for text classification, an SVM will learn to identify both positive and negative words in sentences, phrases, and paragraphs.

Enrol for Free