R for Data Science

Enroll in this free online course to gain a strong foundation in data visualization and manipulation using R. Channelize your career in Data Science with essential skills and techniques.

Instructor:

Mr. Bharani Akella
4.53
average rating

Ratings

Beginner

Level

3.0 Hrs

Learning hours

12.1K+
local_fire_department

Learners

Skills you’ll Learn

About this Free Certificate Course

This course will introduce you to R programming for Data Science, with a few demonstrated examples. The course shall focus you on the elements and features available in R to work on Data Science tasks. It shall begin with a briefing on the basics of R programming and then help you understand the data structures, in-built functions, user-defined functions, and flow control statements as you follow the first half of the course. The second part engages you by covering data manipulation and data visualization with factors and dataframes in R. The course also comprehends installing R. Take up the assessment at the end of the course to test your skills and evaluate your gains to avail the certificate. 

After this free, self-paced, beginner's guide to R for Data Science, you can enroll in the Data Science course and embark on your career with the professional Post Graduate certificate and learn various concepts in depth with millions of aspirants across the globe!

Why upskill with us?

check circle outline
1000+ free courses
In-demand skills & tools
access time
Free life time Access

Course Outline

Installing R

This module gives you a demo of installing R-Studion on your system.

Basics of R

This section shall cover the basic concepts in R, starting from understanding what a variable is and explaining different types of data. You will then know about the different sections, tabs, and elements in R studio. You will also understand how to work with different types of variables later in this section.

Data Structures in R

Vectors, lists, data frames, matrices, arrays, and factors are the different data structures present in R. You will understand all of these data structures with demonstrated snippets of code in this section.

In-built functions in R

R language have a rich set of built-in functions already created and defined in the programming framework. You will understand and work with a few in-built functions with demonstrated examples in this section.

Flow Control Statements in R

The section begins with defining what flow control statements are and then continues with its expression with a demonstrated snippet of code for each control statement. You will also understand how these statements control the execution and flow of codes depending on the conditions defined. 
 

User defined Functions in R

You will first understand what user-defined functions are and how users create them based on the requirements. You will also learn to define them through the code in this section.

Factor and Dataframe in R

This module begins with explaining what a factor is and will help you understand it through an example. The second part of this section talks about what dataframes are and why they are essential. You will then work with sample codes to understand dataframes better.

Data Manipulation in R

The section begins by defining what data manipulation is with an example. You will then understand the role of the DPLYR package in data manipulation and work with its methods, functions, and operators to alter and fetch data in order to organize data and make it more readable in R in the second part of this section.

Data Visualization in R

You will understand what data visualization is at the beginning of this section and then continue to understand it through ggplot2. You will also learn to stack and represent layers using histogram, bar graph, scatter point, and box plot through ggplot2 and also look at the demonstrated code snippet to understand data visualization better.

Our course instructor

instructor img

Mr. Bharani Akella

Data Scientist

learner icon
3.2M+ Learners
video icon
82 Courses
Bharani has been working in the field of data science for the last 2 years. He has expertise in languages such as Python, R and Java. He also has expertise in the field of deep learning and has worked with deep learning frameworks such as Keras and TensorFlow. He has been in the technical content side from last 2 years and has taught numerous classes with respect to data science.

Trusted by 10 Million+ Learners globally

What our learners say about the course

Find out how our platform helped our learners to upskill in their career.

4.53
Course Rating
70%
21%
6%
1%
2%

What our learners enjoyed the most

Ratings & Reviews of this Course

Reviewer Profile

5.0

Engaging Content, Practical Applications, and Insightful Discussions
I appreciate the course's engaging content, practical applications, and insightful discussions. It offers real-world examples and interactive activities that enhance understanding. The well-structured lessons and supportive community make learning enjoyable and effective.
Reviewer Profile

5.0

Happy to Learn About R in a Short Time Span
I found the course concise and easy to understand with great tutorials.
Reviewer Profile

5.0

It's a Very Great Way to Start Learning R!
The courses are well-structured and provide clear examples too.
Reviewer Profile

5.0

It Was Interesting and Engaging for Me to Understand
The content of the course is fast-paced and easy to understand. The instructor explained many sections in detail, which allowed me to understand how to use R better with the relevant examples.
Reviewer Profile

5.0

Learning R Provides Deep Insights into Data Analysis, Visualization, and Statistical Modeling
I enjoy learning R because it offers powerful tools for data manipulation and visualization. Its simplicity in writing clean code and flexibility with packages like ggplot2 make it ideal for creating insightful visualizations. R's strong statistical capabilities also deepen my understanding of data-driven analysis.
Reviewer Profile

5.0

I Enjoyed It a Lot. I Would Recommend It.
It was very easy to understand and very useful. I tried to learn how to use R when I was at the university, and now I can get more.
Reviewer Profile

5.0

It Was a Great and In-Depth Learning Experience
The instructor knew what he was teaching and had great knowledge about the subject!
Reviewer Profile

5.0

I Like the Course Because It Is the Right Way to the Data Science Field Journey
This is an incredible course, and the name of the short course is very nice and promising for the next data science job opportunities. Thank you for your generous teaching style.

R for Data Science

3.0 Learning Hours . Beginner

Why upskill with us?

check circle outline
1000+ free courses
In-demand skills & tools
access time
Free life time Access
10 Million+ learners

Success stories

Can Great Learning Academy courses help your career? Our learners tell us how.

And thousands more such success stories..

Frequently Asked Questions

What are the prerequisites required to learn the R for Data Science course?

R for Data Science is a beginner's course, and you can begin the course with good knowledge of computer science. But if you want to do a little homework to boost your learning, we suggest you learn the basics of R programming and Data Science before starting this course.

How long does it take to complete this free R for Data Science course?

The R for Data Science free certificate course is a 2-hours long course. You can learn it at your convenience since the course is self-paced.

Will I have lifetime access to this free course?

Yes, once you enroll in the course, you will have lifetime access to this Great Learning Academy's free course. You can log in and learn whenever you want to.

What are my next learning options after this R Programming for Data Science course?

Once you complete this free course, you can opt for a Master's in Data Science that will help advance your career growth in this leading field.

Is it worth learning R for Data Science?

Yes, it is beneficial to learn R for Data Science. Data Science being one of the leading technologies in the world today, the market for Data Science professionals only grows every day. If you are thorough with R programming, then it serves as a one-stop to carry out data visualization and data manipulation in tasks Data Science efficiently.

What is R programming in Data Science used for?

R programming language has libraries and packages that make it straightforward and easier for programmers to work on data manipulation and data visualization tasks. Also, elements like factors and dataframes structure data representation and make it understandable to the user.

Why is R for Data Science so popular?

R is a statistical programming language that can be used to work with data visualization and data manipulation tasks. These are the essential functions carried out by any data science professional to understand data, and R provides inbuilt libraries and packages to carry out these functions in a more efficient way hence making it a popular tool for Data Science purposes.

Will I get a certificate after completing this free R for Data Science course?

Yes, you will get a certificate of completion for the R for Data Science course after completing all the modules and cracking the quiz/assessment. The assessment tests your knowledge of the subject and badges your skills.

What knowledge and skills will I gain upon completing this course?

You will gain the foundational knowledge of how to use R Programming for Data Science tasks through this course. You will get familiar with data structures, flow control statements, functions, factors, dataframes, data visualization, and data manipulation concepts using R programming upon completion. 

How much does this R for Data Science course cost?

It is an entirely free course from Great Learning Academy. Anyone interested to learn R Programming for Data Science and understanding the basics can get started with this course.

Is there any limit on how many times I can take this free course?

Once you enroll in the R for Data Science course, you have lifetime access to it. So, you can log in anytime and learn it for free online.

Can I sign up for multiple courses from Great Learning Academy at the same time?

Yes, you can enroll in as many courses as you want from Great Learning Academy. There is no limit to the number of courses you can enroll in at once, but since the courses offered by Great Learning Academy are free, we suggest you learn one by one to get the best out of the subject.

Why choose Great Learning Academy for this free R for Data Science course?

Great Learning is a global educational technology platform committed to developing skilled professionals. Great Learning Academy is a Great Learning project that provides free online courses to assist people in succeeding in their careers. Great Learning Academy's free online courses with certificates have helped over 4 million students from 140 countries. It's a one-stop destination for all of a student's needs.

 

This course is not only free and self-paced, but it also includes solved problems, demonstrated codes, and presented examples to help you comprehend the numerous areas that fall under the subject. The course is conducted by topic experts and is carefully tailored to cater to both beginners and professionals.

Who is eligible to take this course?

Anybody with basic knowledge of computer science, Data Science, and with a good hold on R Programming, interested in learning Data Science with R and understanding its basics can take up the course. So, enroll in our R programming course today and learn it for free online.

What are the steps to enroll in this R for Data Science course?

Enrolling in Great Learning Academy’s R for Data Science is a simple and straightforward approach. You will have to sign-up with your E-Mail ID, enter your user details, and then, you can start learning at your own pace.

Recommended Free Data Science courses

Free
Multivariate Time Series Forecasting in R
course card image

Free

INTERMEDIATE

Free
Statistical Methods for Decision Making
course card image

Free

INTERMEDIATE

Free
Business Analytics for Beginners
course card image

Free

Beginner

Free
Credit Card Fraud Detection
course card image

Free

Beginner

Similar courses you might like

Free
Data Science with Python
course card image

Free

Beginner

Free
R in Data Science
course card image

Free

Beginner

Free
Statistics for Data Science
course card image

Free

Beginner

Free
HR Database Management System
course card image

Free

Beginner

Related Data Science Courses

50% Average salary hike
Explore degree and certificate programs from world-class universities that take your career forward.
Personalized Recommendations
checkmark icon
Placement assistance
checkmark icon
Personalized mentorship
checkmark icon
Detailed curriculum
checkmark icon
Learn from world-class faculties

Other Data Science tutorials for you

R for Data Science

R, for the most part, accompanies the Command-line interface. R is accessible across broadly utilized platforms like Windows, Linux, and macOS. R programming language is an execution of the S programming language, and it additionally joins with lexical scoping semantics motivated by Scheme. R writing computer programs is utilized as the main apparatus for ML, statistics, and data analysis. Objects, functions, and packages can be made by R.

Importing data into R

You take data and put it away in a document, database, or web application programming interface (API). It is loaded into the data frame in R. You can’t do data science on R if you cannot import the data into R.

One of the widest datastore is the .csv (comma-separated values) file format. R stacks a variety of libraries during the startup, including the utils format. This package is advantageous to open CSV files joined with the reading.csv() work.

Excel files are extremely well known for data analysis. Spreadsheets are not difficult to work with and are adaptable. R is outfitted with a library readxl to import an Excel spreadsheet.

The function read_excel() is of extraordinary use regarding opening xls and xlsx extensions.

The average organization for a spreadsheet involves the first row as the header (usually variable name). Avoid naming a dataset having blank spaces; it can prompt interpreting a separate variable. Short names are preferred. Do not include the symbol in the name.

Tidyr 

Tidyr is a tool to create tidy data where each column is a variable, each row is an observation, and each cell contains a single value. Tidy data is data that is not difficult to work with: it's not tricky to munge (with dplyr), visualize (with ggplot2 or ggvis), and model (with R's many modeling packages ). The two most significant properties of tidy data are that each column is a variable and each row is an observation.

Orchestrating your data in this manner makes it more straightforward to work with because you have a reliable method of referring to variables (as column names) and observations (as row indices). When utilizing tidy data and tidy tools, you invest less energy in understanding how to feed the output from the function into the input and additional time responding to your inquiries concerning the information.

Wrangling 

Tidying and transforming together is called wrangling. A dataset can be introduced in a wide range of ways to the world. Allow us to take a gander at one of the most essential and fundamental distinctions, regardless of whether a dataset is wide or long.

The distinction between wide and long datasets consolidates whether we like to have more rows in our dataset or more columns. A dataset that puts bright lights on extra data about a solitary column are a wide dataset because adding an ever-increasing number of columns makes the dataset wider. Additionally, a dataset that contains data about a subject for rows is known as a long dataset.

In Data Wrangling in R, now and again, we want to make long datasets more extensive and the other way around. Generally, data scientists who embrace the idea of tidy data normally favor long datasets over wide ones since longer data sets are more agreeable to control in R.

Visualization 

The famous data visualizations accessible are Tableau, Plotly, R, Google Charts, Infogram, and Kibana. The different data visualization platforms have different capacities, functionality, and use cases, and they likewise require different skill sets. 

R is a language intended for statistical computing, graphical data analysis, and scientific research. It is generally liked for data visualization as it offers adaptability and the least required coding through its package.

Modeling 

Models are corresponding apparatuses to visualization. Whenever you have made your inquiries adequately exact, you can utilize a model to respond to them. Models are essentially mathematical or computational devices, so they scale well for the most part. In any event, when they don't, it's normally less expensive to purchase a larger number of PCs than it is to purchase more brains! However, every model makes assumptions, and a model can't question its assumptions by its actual nature. That implies a model can't essentially surprise you.

Data Structures in R

A data structure is an approach to getting information sorted out in a PC, so it tends to be utilized successfully. The thought is to lessen the space and time complexities of various undertakings. Data structures in R programs are tools for holding numerous qualities.

R's base data structures are frequently coordinated by their dimensionality (1D, 2D, or nD) and regardless of whether they're homogeneous (all components should be of the identical type) or heterogeneous (the components are often of different kinds). This brings about the six data types most often used in data analysis.
 

Enrol for Free