Neural Network Basics in Python

Explore Neural Network Basics in Python: Ignite Deep Learning with Tensorflow, Keras, MLP, Backpropagation, Batch Normalization, and Stock Price Prediction. Join the free course now!

4.58
average rating

Ratings

Intermediate

Level

17.25 Hrs

Learning hours

1.7K+

Learners

Earn a certificate of completion

blue-tick

Get free course content

blue-tick

Learn at your own pace

blue-tick

Master in-demand skills & tools

blue-tick

Test your skills with quizzes

Neural Network Basics in Python

17.25 Learning Hours . Intermediate

Skills you’ll Learn

About this course

Uncover the fundamentals of neural networks and deep learning, guided by expert instruction. Explore essential concepts like Tensorflow and Keras, delve into the architecture of Multilayer Perceptrons, understand Back Propagation, and harness the power of Batch Normalization. The course culminates in a practical application—Stock Price Prediction using Deep Learning. Gain hands-on experience, enhance your Python skills, and unlock the secrets of neural networks. Elevate your understanding of the digital frontier and enroll today for an enriching educational experience.

 

Ready to enhance your skills further? Next, explore our Postgraduate Program in Artificial Intelligence and Machine Learning.

Why upskill with us?

check circle outline
1000+ free courses
In-demand skills & tools
access time
Free life time Access

Course Outline

Introduction to Neural Network and Deep learning

Gain foundational knowledge in neural networks and deep learning, understanding the basics of artificial neural networks and their application in solving complex problems.

Introduction to Tensorflow and Keras

Explore the powerful tools of TensorFlow and Keras for building and training neural networks. This course provides a hands-on introduction to these frameworks, essential for deep learning development.

Multilayer Perceptron

Dive deeper into neural network architecture by studying the multilayer perceptron (MLP). Understand how this fundamental structure contributes to the learning capabilities of neural networks.

Back Propagation

Delve into the backpropagation algorithm, a key component in training neural networks. Learn how this optimization technique adjusts weights to minimize errors and enhance the model's predictive accuracy.

Batch Normalisation

Explore the benefits of batch normalization in neural networks. This course covers the normalization technique applied to mini-batches, improving the training process and stability of deep learning models.

Stock Price Prediction using Deep Learning

Apply the knowledge gained in neural networks and deep learning to predict stock prices. This course focuses on using deep learning techniques to analyze historical stock data and make informed predictions in financial markets.

Trusted by 10 Million+ Learners globally

What our learners say about the course

Find out how our platform helped our learners to upskill in their career.

4.58
Course Rating
74%
20%
4%
0%
2%

What our learners enjoyed the most

Ratings & Reviews of this Course

Reviewer Profile

5.0

Mastering Neural Networks: Foundations in Python
This course provides a foundational understanding of neural networks, focusing on core concepts and practical applications using Python. Participants will learn about various architectures, activation functions, and training methods, empowering them to build and deploy their own neural network models effectively. Ideal for beginners, this hands-on course combines theory with real-world examples to ensure a solid grasp of neural networks in Python.
Reviewer Profile

5.0

Neural Science in Python Language at Beginner Level
Neural science in Python language at the beginner level is very helpful.

Earn a certificate of completion

blue-tick

Get free course content

blue-tick

Learn at your own pace

blue-tick

Master in-demand skills & tools

blue-tick

Test your skills with quizzes

Neural Network Basics in Python

17.25 Learning Hours . Intermediate

Frequently Asked Questions

What prerequisites are required to enrol in this Free Neural Network Basics in Python course?

You do not need any prior knowledge to enrol in this Neural Network Basics in Python course. 
 

How long does it take to complete this Free Neural Network Basics course?

It is a 13 hour long course, but it is self-paced. Once you enrol, you can take your own time to complete the course.
 

Will I have lifetime access to the free course?

Yes, once you enrol in the course, you will have lifetime access to any of the Great Learning Academy’s free courses. You can log in and learn whenever you want to.
 

Will I get a certificate after completing this Free Neural Networks course?

Yes, you will get a certificate of completion after completing all the modules and cracking the assessment. 
 

How much does this Neural Network Basics in Python course cost?

It is an entirely free course from Great Learning Academy. 

Is there any limit on how many times I can take this free course?

No. There is no limit. Once you enrol in the Free Neural Network Basics in Python course, you have lifetime access to it. So, you can log in anytime and learn it for free online.
 

Recommended Free Data Science courses

Free
Analytics with SQL and Python
course card image

Free

Beginner

Free
Predict Footballer Transfer Market Value using Data Science
course card image

Free

INTERMEDIATE

Free
Python Projects for Data Analysis
course card image

Free

Beginner

Free
R for Data Science
course card image

Free

Beginner

Similar courses you might like

Free
NumPy Tutorial
course card image

Free

Beginner

Free
Introduction to Neural Networks
course card image

Free

Beginner

Free
Logistic Regression
course card image

Free

Beginner

Free
Application of Machine Learning in Finance
course card image

Free

Beginner

Related Data Science Courses

50% Average salary hike
Explore degree and certificate programs from world-class universities that take your career forward.
Personalized Recommendations
checkmark icon
Placement assistance
checkmark icon
Personalized mentorship
checkmark icon
Detailed curriculum
checkmark icon
Learn from world-class faculties

Other Data Science tutorials for you

Neural Network Basics in Python

Neural networks form the backbone of modern machine learning, enabling computers to learn from data and make intelligent decisions. These artificial intelligence models are inspired by the structure and functioning of the human brain, comprising interconnected nodes that mimic neurons. In Python, a versatile and widely-used programming language, neural networks can be implemented using various libraries, such as TensorFlow or PyTorch.

At its core, a neural network consists of layers of nodes, commonly known as neurons or artificial neurons. These layers can be broadly categorized into three types: input layer, hidden layers, and output layer. The input layer receives the initial data, which is then processed through the hidden layers, and finally, the output layer produces the desired result.

Each connection between nodes in different layers has an associated weight. During training, the neural network adjusts these weights based on the provided data and the desired output. This process involves forward and backward passes, where the input data is fed forward to make predictions, and then errors are calculated and propagated backward to adjust the weights.

Activation functions play a crucial role in introducing non-linearity into the network. Without activation functions, the neural network would be reduced to a linear model, limiting its capacity to learn complex patterns. Popular activation functions include sigmoid, tanh, and rectified linear unit (ReLU), each serving different purposes in enhancing the model's performance.

Training a neural network involves feeding it with labeled data and optimizing the weights to minimize the difference between predicted and actual outputs. This optimization is achieved through iterative processes like gradient descent, where the network adjusts its parameters in the direction that minimizes the error. The learning rate determines the step size in this optimization process, influencing the convergence speed and stability of the model.

One of the key challenges in neural network training is overfitting, where the model performs well on the training data but fails to generalize to new, unseen data. Techniques such as regularization, dropout, and cross-validation are employed to mitigate overfitting, ensuring that the neural network can make accurate predictions on diverse datasets.

Python provides a rich ecosystem of libraries for implementing neural networks. TensorFlow and PyTorch are two prominent choices, each offering high-level abstractions that simplify the process of building and training neural networks. These libraries also provide pre-built layers, optimizers, and loss functions, enabling users to focus on model design and experimentation rather than low-level implementation details.

Neural networks find applications across various domains, including image and speech recognition, natural language processing, and autonomous systems. Convolutional Neural Networks (CNNs) excel in image-related tasks, Recurrent Neural Networks (RNNs) are adept at handling sequential data, and Transformers have proven highly effective in natural language processing tasks.

In conclusion, neural networks in Python provide a powerful framework for machine learning applications. Understanding the basics, including the structure of layers, activation functions, and the training process, is essential for designing effective models. Python's versatile libraries, such as TensorFlow and PyTorch, simplify the implementation of neural networks, making them accessible to a broad audience of developers and researchers. As the field of artificial intelligence continues to advance, neural networks remain a cornerstone technology, driving innovations and breakthroughs in various industries.
 

Enrol for Free