Basics of Time Series in Data Science

Learn Forecasting, Multivariate Time Series in R, COVID Data Analysis, Stock Market Prediction in Python, and more. Dive into the essentials of Time Series in Data Science today!

4.24
average rating

Ratings

Intermediate

Level

7.5 Hrs

Learning hours

740

Learners

Earn a certificate of completion

blue-tick

Get free course content

blue-tick

Learn at your own pace

blue-tick

Master in-demand skills & tools

blue-tick

Test your skills with quizzes

Basics of Time Series in Data Science

7.5 Learning Hours . Intermediate

Skills you’ll Learn

About this course

Dive into our Basics of Time Series in Data Science course, where each section is crafted to elevate your proficiency in forecasting, Multivariate Time Series in R, COVID data analysis, Python-based stock market prediction, and manufacturing industry applications. With a focus on real-world scenarios, this course offers a hands-on approach to mastering time series analysis, providing practical skills for aspiring data scientists and industry professionals alike. Uncover the potential of time-dependent data and position yourself at the forefront of data-driven innovation.

 

Ready to go beyond the basics? Take your data analytics skills to the next level. Check out our PGP in Data Science and Business Analytics. 

Why upskill with us?

check circle outline
1000+ free courses
In-demand skills & tools
access time
Free life time Access

Course Outline

What is Forecasting?

Understand the fundamental concepts and methodologies involved in predicting future trends and outcomes based on historical data and analysis.

Multivariate Time Series Forecasting in R

Develop expertise in using R for predicting multiple interrelated variables over time, enabling advanced analysis and forecasting in multivariate time series scenarios.

Multivariate Time Series on COVID Data

Apply multivariate time series analysis techniques to COVID-19 data, gaining insights into the interconnected dynamics of various factors related to the pandemic for informed decision-making.

Time Series Analysis Stock Market Prediction Python

Master time series analysis using Python for stock market prediction, acquiring skills to analyze historical stock data, identify patterns, and build predictive models to inform investment strategies.

Time Series in Manufacturing Industry

Learn how time series analysis can be applied in the manufacturing industry to optimize production schedules, predict equipment maintenance needs, and enhance overall operational efficiency.

Trusted by 10 Million+ Learners globally

What our learners say about the course

Find out how our platform helped our learners to upskill in their career.

4.24
Course Rating
56%
21%
21%
0%
2%

Ratings & Reviews of this Course

Reviewer Profile

5.0

Engaging Content, Practical Applications, and Insightful Discussions
I appreciate the course's engaging content, practical applications, and insightful discussions. It offers real-world examples and interactive activities that enhance understanding. The well-structured lessons and supportive community make learning enjoyable and effective.
Reviewer Profile

4.0

The Procedure of Learning is Very Good
I loved the content of this course. I learned a lot. The procedure is very good.

Earn a certificate of completion

blue-tick

Get free course content

blue-tick

Learn at your own pace

blue-tick

Master in-demand skills & tools

blue-tick

Test your skills with quizzes

Basics of Time Series in Data Science

7.5 Learning Hours . Intermediate

Frequently Asked Questions

What prerequisites are required to enrol in this Free Time Series in Data Science course?

You do not need any prior knowledge to enrol in this Time Series in Data Science course. 
 

What prerequisites are required to enrol in this Free Time Series in Data Science course?

You do not need any prior knowledge to enrol in this Time Series in Data Science course. 

How long does it take to complete this Free Time Series in Data Science course?

It is a 6.0 hour long course, but it is self-paced. Once you enrol, you can take your own time to complete the course.
 

Will I have lifetime access to the free course?

Yes, once you enrol in the course, you will have lifetime access to any of the Great Learning Academy’s free courses. You can log in and learn whenever you want to.
 

Will I get a certificate after completing this Free Time Series in Data Science course?

Yes, you will get a certificate of completion after completing all the modules and cracking the assessment. 
 

How much does this Time Series in Data Science course cost?

It is an entirely free course from Great Learning Academy.

Is there any limit on how many times I can take this free course?

No. There is no limit. Once you enrol in the Free Time Series in Data Science course, you have lifetime access to it. So, you can log in anytime and learn it for free online.

Recommended Free Data Science courses

Free
Applying Analytics to Business Problems
course card image

Free

INTERMEDIATE

Free
Foundations of Data Visualization using Tableau
course card image

Free

Beginner

Free
Python for Machine Learning and Data Science
course card image

Free

Beginner

Free
k-fold Cross Validation
course card image

Free

INTERMEDIATE

Similar courses you might like

Free
Time Series Analysis in R
course card image

Free

INTERMEDIATE

Free
Multivariate Time Series Forecasting in R
course card image

Free

INTERMEDIATE

Free
Multivariate Time Series on COVID Data
course card image

Free

Beginner

Free
Artificial Intelligence with Python
course card image

Free

INTERMEDIATE

Related Data Science Courses

50% Average salary hike
Explore degree and certificate programs from world-class universities that take your career forward.
Personalized Recommendations
checkmark icon
Placement assistance
checkmark icon
Personalized mentorship
checkmark icon
Detailed curriculum
checkmark icon
Learn from world-class faculties

Other Data Science tutorials for you

Basics of Time Series in Data Science

Time series analysis is a critical component of data science that deals with sequences of data points ordered by time. These data points are typically collected at regular intervals, and the goal of time series analysis is to extract meaningful insights, patterns, and trends from this temporal data. Time series analysis plays a crucial role in various fields, including finance, economics, weather forecasting, healthcare, and more.

One of the fundamental characteristics of time series data is its temporal dependency. The value of a data point at a specific time is often influenced by its past values, making time series data inherently sequential. Understanding and leveraging this sequential nature is essential for making accurate predictions and informed decisions.

Time series analysis encompasses several key components, including:

  • Trend Analysis: Identifying the long-term movement or directionality in the data. Trends can be upward, downward, or even exhibit periodic patterns.
  • Seasonal Patterns: Recognizing repetitive patterns or cycles that occur at fixed intervals, such as daily, monthly, or yearly variations. Seasonal patterns often result from external factors like holidays, weather changes, or economic cycles.
  • Noise and Irregularities: Separating random fluctuations or noise from the underlying patterns is crucial for accurate analysis. Noise can obscure meaningful insights, and filtering it out helps in focusing on the essential aspects of the time series.
  • Autocorrelation: Examining the correlation of a time series with its past values, which provides insights into the persistence of patterns over time.
  • Forecasting: Predicting future values based on historical data. Time series forecasting is used in various applications, such as predicting stock prices, demand for products, or weather conditions.
  • Anomaly Detection: Identifying unusual or unexpected patterns in the data, which could indicate errors, fraud, or other noteworthy events.

In data science, several techniques and models are employed for time series analysis:

  • Moving Averages: A simple method that smoothens the data by averaging consecutive subsets of values. This helps in highlighting trends and reducing the impact of noise.
  • Exponential Smoothing: A more advanced approach that assigns different weights to past observations, with more recent observations receiving higher weights.
  • ARIMA (AutoRegressive Integrated Moving Average): A popular and powerful time series forecasting model that combines autoregressive and moving average components.
  • Machine Learning Models: Advanced algorithms such as decision trees, random forests, and neural networks can be applied to time series data for more accurate predictions, especially when dealing with complex patterns.
  • Long Short-Term Memory (LSTM) Networks: A type of recurrent neural network (RNN) particularly effective in capturing long-term dependencies in time series data.

The application of time series analysis in data science extends to various domains. For instance, in finance, it helps in predicting stock prices and analyzing market trends. In healthcare, it aids in forecasting patient admission rates, while in manufacturing, it can optimize production schedules based on demand patterns.

In conclusion, time series analysis is a critical aspect of data science, enabling professionals to gain valuable insights, make informed predictions, and optimize decision-making processes. As technology continues to advance, the methods and models used in time series analysis will likely evolve, providing even more accurate and sophisticated tools for understanding and harnessing the power of temporal data.
 

Enrol for Free